Monte Carlo-based treatment planning for a spoiler system with experimental validation using plane-parallel ionization chambers.

نویسندگان

  • Sei-Kwon Kang
  • Byung Chul Cho
  • Sung Ho Park
  • Hee Chul Park
  • HoonSik Bae
  • Jong Oh Kim
  • Paul J Keall
  • Jeffrey V Siebers
چکیده

A beam spoiler is often used to increase the build-up dose near the surface for treatment of superficial treatment areas. Photon-beam spoilers produce a large amount of contaminant electrons, conditions for which standard, commercial treatment-planning system dose-calculation algorithms are inadequate for producing accurate dose calculations. In this study, we implemented a Monte Carlo (MC) dose-calculation algorithm for this spoiler system. With and without a spoiler of 1 cm Lucite, depth doses and transverse profiles in the build-up region were measured for field sizes of 5 x 5 cm2 and 10 x 10 cm2 at the spoiler-to-surface distances (STSDs) of 6, 10 and 15 cm. An Attix chamber and a Markus chamber were used for depth doses, whereas a diode detector was used for transverse profiles. An MC simulation using BEAM/DOSXYZ was used to compare the calculated and the measured data. The MC calculations agreed with the Attix chamber measurements within 2% for all STSDs and field sizes, whereas the Markus data--even with corrections made-showed a discrepancy of about 3.5% with a maximum difference of 7.3% for a field size of 10 x 10 cm2 at an STSD of 6 cm. The MC treatment-planning system was successfully applied to a head-and-neck case using 6 MV photon beams with a beam spoiler.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approach in Radiation Therapy Treatment Planning: A Fast, GPU-Based Monte Carlo Method

Introduction: An accurate and fast radiation dose calculation is essential for successful radiation radiotherapy. The aim of this study was to implement a new graphic processing unit (GPU) based radiation therapy treatment planning for accurate and fast dose calculation in radiotherapy centers. Materials and Methods: A program was written for parallel runnin...

متن کامل

A Comparison of dosimetric parameters between IAEA TRS-398, AAPM TG-51 protocols and Monte-Carlo simulation

Background: Two protocols of AAPM TG-51 and IAEA TRS-398 were compared followed by a measurement and Monte Carlo simulation of beam quality correction factor, KQ, AAPM TG-51 and IAEA TRS-398 protocols were compared for the absorbed dose to water for DW, and KQ parameters. Materials and Methods: Dose measurements by either protocols were performed with cylindrical and plane parallel ch...

متن کامل

An Efficiency Studying of an Ion Chamber Simulation Using Vriance Reduction Techniques with EGSnrc

Background: Radiotherapy is an important technique of cancer treatment using ionizing radiation. The determination of total dose in reference conditions is an important contribution to uncertainty that could achieve 2%. The source of this uncertainty comes from cavity theory that relates the in-air cavity dose and the dose to water. These correction factors are determined from Monte Carlo calcu...

متن کامل

Evaluation of the RtDosePlan Treatment Planning System using Radiochromic Film and Monte Carlo Simulation

Introduction: GafChromic EBT films are one of the self-developing and modern films commercially available for dosimetric verification of treatment planning systems (TPSs). Their high spatial resolution, low energy dependence and near-tissue equivalence make them suitable for verification of dose distributions in radiation therapy. This study was designed to evaluate the dosimetric parameters of...

متن کامل

Monte Carlo calculations of correction factors for plane-parallel ionization chambers in clinical electron dosimetry.

Recent standard dosimetry protocols recommend that plane-parallel ionization chambers be used in the measurements of depth-dose distributions or the calibration of low-energy electron beams with beam quality R50 <4 g/cm2. In electron dosimetry protocols with the plane-parallel chambers, the wall correction factor, Pwall, in water is assumed to be unity and the replacement correction factor, Pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 49 22  شماره 

صفحات  -

تاریخ انتشار 2004